The author is indebted to Dr E. H. P. Cordfunke for supplying the sample, Mr P. van Vlaanderen for the collection of the X-ray data, and Dr W. G. Haije for the collection of the neutron diffraction data at the Petten High-Flux Reactor of the Netherlands Energy Research Foundation ECN.

References

Cordfunke, E. H. P., van Vlaanderen, P., Onink, M. \& IJdo, D. J. W. (1991). J. Solid State Chem. 94, 12-18.

Dutvenboden, H. C. van \& IJdo, D. J. W. (1986). Acta Cryst. C42, 523-525.
Groen, W. A. \& IJdo, D. J. W. (1987). Acta Cryst. C43, 1033-1036.
Koester, L., Rauch, H., Herkens, M. \& Schroeder, K. (1981). Report 1755. Kernforschungsanlage Jülich, Germany.
Loopstra, B. O. \& Rietveld, H. M. (1969). Acta Cryst. B25, 787-791.
Megaw, H. D. (1973). Crystal Structures - A Working Approach, ch. 2.1. Philadelphia: Saunders.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
Weber, K. (1967). Acta Cryst. 23, 720-725.
Young, R. A. \& Wiles, D. B. (1982). J. Appl. Cryst. 15, 430-438.

Acta Cryst. (1993). C49, 652-654

$\mathrm{Ba}_{2} \mathrm{Ce}_{3 / 4} \mathrm{SbO}_{6}$, a Rietveld Refinement of Neutron Powder Diffraction Data

By D. J. W. IJdo
Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
and R. B. Helmholdt
Netherlands Energy Research Foundation ECN, PO Box 1, 1755 ZG Petten, The Netherlands

(Received 31 November 1991; accepted 13 October 1992)

Abstract. Dibarium cerium antimonate, $\mathrm{Ba}_{2} \mathrm{Ce}_{3 / 4}{ }^{-}$ $\mathrm{SbO}_{6}, M_{r}=597.52$, tetragonal, $14 / \mathrm{mmm}$. At room temperature, $a=8.4562$ (1), $c=17.0002$ (4) $\AA, V=$ 1215.64 (2) $\AA^{3}, Z=8, D_{x}=6.5297$ (1) $\mathrm{Mg} \mathrm{m}^{-3}, \mu R$ $=0.15, \lambda=2.5717$ (1) $\AA, R_{w p}=2.85 \%$. The structure has been refined using Rietveld analysis of neutron powder diffraction data recorded for 106 reflections. The structure is a perovskite with complete order of CeO_{6} and SbO_{6} octahedra. Ordered vacancies in the cerium sublattice give rise to a superstructure.

Introduction. In a research project concerned with investigation of uranium perovskites, the structures of $A_{2} B \mathrm{UO}_{6}, A=\mathrm{Ba}, \mathrm{Sr}, \mathrm{Ca}$ and $B=\mathrm{Sr}$ and Ca , were determined (Groen \& IJdo, 1987; IJdo, 1993). Also, perovskites with vacancies on the B site are known (Rauser \& Kemmler-Sack, 1980); some examples are $\mathrm{Ba}_{2} \mathrm{Sm}_{2 / 3} \mathrm{UO}_{6}, \quad \mathrm{Ba}_{2} \mathrm{Ce}_{3 / 4} \mathrm{SbO}_{6}$ and $\mathrm{Ba}_{2} \mathrm{Zr}_{3 / 4} \mathrm{SbO}_{6}$. Ordering of the vacancies is indicated by the occurrence of superstructures, but details of these structures are unavailable at present. Because $\mathbf{S b}^{\vee}$ and \mathbf{U}^{\vee} in oxides sometimes give rise to isomorphous compounds (Cordfunke \& IJdo, 1988), the study of the structure of $\mathrm{Ba}_{2} \mathrm{Ce}_{3 / 4} \mathrm{SbO}_{6}$ is attractive in relation to the perovskite phases in nuclear fuel elements. This paper deals with the crystal structure of $\mathrm{Ba}_{2} \mathrm{Ce}_{3 / 4}{ }^{-}$ SbO_{6}.

Treiber \& Kemmler-Sack (1980a) reported an ochre-coloured compound with a tetragonal superstructure of the perovskite type $[a=11.954 \AA \simeq$ $2 a_{p} \sqrt{ } 2, c=17.000 \AA \simeq 4 a_{p}, P 4 / \mathrm{mmm}$, where a_{p} is the lattice parameter of a simple cubic perovskite $A B \mathrm{O}_{3}$]. A model structure was given suggested by X-ray powder diffraction data; however, the positions of the O atoms could not be determined accurately.

Experimental. AR starting materials $\mathrm{BaO}_{2}, \mathrm{CeO}_{2}$ and $\mathrm{Sb}_{2} \mathrm{O}_{3}$ were thoroughly mixed in an agate mortar in the appropriate ratios. The mixture was heated in an alumina crucible in air at 973 K for 1 d , at 1273 K for 1 d , and at 1523 K for 7 d with repeated grinding. In addition, the compound was annealed at 1273 K for 1 d and cooled in air to room temperature.
X-ray diffraction patterns were obtained at room temperature with a Philips 1050 diffractometer by step scanning in the range $5<2 \theta<90^{\circ}$, with $\Delta(2 \theta)$ $=0.05^{\circ}, t=3 \mathrm{~s}$ per step. All calculations were made with the program $D B W 3.2 S$ version 8804 (Young \& Wiles, 1982). Electron diffraction data were collected with a Siemens Elmiskop 102 electron microscope: double tilt; lift cartridge; 100 kV . The electron diffraction patterns showed a tetragonal unit cell with $a \approx 2 a_{p}$ and $c \simeq 4 a_{p}$ with systematic absences for $h+k$ $+l=2 n+1$, indicating the space group $I 4 / \mathrm{mmm}$ or a lower one. Refinement of the X-ray powder diffrac-
tion data using a perovskite model with ordered CeO_{6} and SbO_{6} octahedra and vacancies on the Ce sublattice gave $R_{w p}=18.7 \%$. Space group $I 4 / m$ gives no better results.

For more accurate O -atom positions, a sample of about 25 g was prepared for neutron powder diffraction data collection on the powder diffractometer at the Petten High-Flux Reactor. Experimental details are as reported earlier (Groen \& IJdo, 1987). Maximum absorption correction was $<1 \% ; \mu R=0.15$ (Weber, 1967). Coherent scattering lengths were: Ba 5.25 , Ce 4.84, Sb 5.64 and O 5.805 fm (Koester, Rauch, Herkens \& Schroeder, 1981). $\Delta / \sigma<0.3$ in

Fig. 1. Observed (dots) and calculated (full line) neutron diffraction profile of $\mathrm{Ba}_{2} \mathrm{Ce}_{3,4} \mathrm{SbO}_{6}$ at room temperature. A difference (observed - calculated) curve appears at the bottom of the plot. Tick marks below the profile indicate the position of the Bragg reflections included in the calculation for $\mathrm{Ba}_{2} \mathrm{Ce}_{3,4} \mathrm{SbO}_{6}, \mathrm{CeO}_{2}$ and $\mathrm{BaSb}_{2} \mathrm{O}_{6}$.

Fig. 2. The structure of $\mathrm{Ba}_{2} \mathrm{Ce}_{3,4} \mathrm{SbO}_{6} ; \mathrm{O}$ atoms are omitted for clarity.

Table 1. Fractional atomic coordinates and thermal parameters $\left(\AA^{2}\right)$ for $\mathrm{Ba}_{2} \mathrm{Ce}_{3 / 4} \mathrm{SbO}_{6}$ at room temperature

	x	y	z	B
Ba	$0.2306(2)$	$0.2306(2)$	$0.1167(2)$	$0.98(4)$
Ce 1	0	0	0.5	$0.45(7)$
Ce 2	0.5	0	0.25	$0.45(7)$
Sb 1	0.5	0	0	$0.09(5)$
Sb 2	0	0	$0.2555(4)$	$0.09(5)$
OI	0.5	$0.2382(6)$	0	$1.71(16)$
O2	0	0	$0.6302(4)$	$0.68(19)$
O3	$0.2378(4)$	0	$0.2546(1)$	$0.78(10)$
O4	$0.2706(5)$	0	0	$0.49(14)$
O5	0	0	$0.1400(3)$	$0.87(18)$
O6	0.5	0	$0.1193(3)$	$1.05(13)$

Table 2. Atomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{Ba}_{2} \mathrm{Ce}_{3 / 4} \mathrm{SbO}_{6}$ at room temperature

$\mathrm{Ba}-\mathrm{Ol}$	$3.022(3) \times 2$	$\mathrm{Ba}-\mathrm{O} 4$	$2.802(3) \times 2$
-O2	3.230 (2)	-O5	2.786 (2)
-03	3.050 (3) $\times 2$	-06	$2.999(2) \times 2$
-03	$3.170(3) \times 2$		
CeO_{6} octahedra			
$\mathrm{Cel}-\mathrm{Ol}$	2.214 (5) $\times 4$	$\mathrm{O} 3-\mathrm{Ce} 2-\mathrm{O} 3$	175.96 (9)
-O2	$2.213(7) \times 2$	$\mathrm{O} 3-\mathrm{Ce} 2-\mathrm{O} 6$	92.02 (4)
$\mathrm{Ce} 2-\mathrm{O} 3$	2.219 (3) $\times 4$		
-06	$2.222(5) \times 2$		
SbO_{6} octahedra			
Sbl -O1	$2.014(5) \times 2$	$\mathrm{O} 2-\mathrm{Sb} 2-\mathrm{O} 3$	90.44 (20)
-04	$1.940(4) \times 4$	$\mathrm{O} 3-\mathrm{Sb} 2-\mathrm{O} 3$	179.13 (40)
$\mathrm{Sb} 2-\mathrm{O} 2$	1.943 (10)		
-03	2.011 (3) $\times 4$		
-O5	1.964 (9)		

the final cycle. Some unreacted CeO_{2} and a trace of $\mathrm{BaSb}_{2} \mathrm{O}_{6}$ were present and refined as separate phases. 42 parameters were included in the refinement: three scale factors for the three phases, three half-width parameters defining the Gaussian-like shape of the reflections, the counter zero error, six background parameters, unit-cell parameters, atomic positional parameters, isotropic thermal parameters (overall thermal parameters for the minority phases) and an asymmetry parameter. The largest correlation-matrix element for structural parameters was 0.35 . The final R values obtained were $R_{p}=2.08, R_{w p}=2.85 \%$ ($w_{i}=1 / y_{i}$), with $R_{\exp }=1.77 \%$, giving $S=1.61$.

Discussion. Atomic parameters are given in Table 1 and selected distances in Table 2. The agreement between the observed and calculated data is shown in Fig. 1.* The structure is shown in Fig. 2.

[^0]The structure of $\mathrm{Ba}_{2} \mathrm{Ce}_{3 / 4} \mathrm{SbO}_{6}$ may be described as a perovskite structure with ordering of nearly regular CeO_{6} and SbO_{6} octahedra. Owing to the formula there are two empty octahedra, at 000 and $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ in the Ce sublattice. Each CeO_{6} octahedron shares corners with six SbO_{6} octahedra. The SblO_{6} octahedron shares corners with five CeO_{6} octahedra and the $\mathrm{Sb} 2 \mathrm{O}_{6}$ octahedron shares corners with six CeO_{6} octahedra. There is no tilting of the octahedra as was reported for BaCeO_{3} (Jacobson, Tofield \& Fender, 1972) and $\mathrm{Ba}_{2} \mathrm{SrUO}_{6}$ (Groen \& IJdo, 1987).

The Ba atoms are shifted from their ideal positions at $\frac{1}{4} \frac{1}{4} \frac{1}{8}$ in the direction of the vacancy, leading to short $\mathrm{Ba}-\mathrm{O} 4$ and $\mathrm{Ba}-\mathrm{O} 5$ distances (Table 2). The coordination of Ba to O atoms is 12 as in a regular cubic perovskite.
The $\mathrm{Ce}-\mathrm{O}$ distances are in good agreement with similar distances reported for BaCeO_{3} (Jacobson, Tofield \& Fender, 1972). The $\mathrm{Sb}-\mathrm{O}$ distances are in agreement with those found in SbO_{6} octahedra in $\mathrm{Sr}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ (Groen \& IJdo, 1988). The model of Treiber \& Kemmler-Sack (1980a) has been confirmed using a reduced unit cell.
Treiber \& Kemmler-Sack (1980b) reported that $\mathrm{Ba}_{2} \mathrm{Zr}_{3 / 4} \mathrm{SbO}_{6}$ has the same structure as $\mathrm{Ba}_{2} \mathrm{Ce}_{3 / 4}-$ SbO_{6}. From their X-ray diffraction data it can be derived that $\mathrm{Ba}_{2} \mathrm{Zr}_{3 / 4} \mathrm{SbO}_{6}$ has an I-centred tetragonal lattice with about the same lattice parameters and intensity distribution as the title compound. In conclusion, we have for $\mathrm{Ba}_{2} \mathrm{Zr}_{3 / 4} \mathrm{SbO}_{6}: a=8.2625$ (5), $c=16.605(5) \AA, I 4 / \mathrm{mmm}, Z=8$.

Betz, Schittenhelm \& Kemmler-Sack (1982) report for low-temperature $\mathrm{Ba}_{2} \mathrm{Ca}_{1 / 4} \mathrm{Y}_{1 / 2} \mathrm{UO}_{6}$ an ortho-
rhombic face-centred structure with $a \approx b \simeq 2 a_{p} \sqrt{ } 2$ and $c \simeq 4 a_{p}$ with the same structure as $\mathrm{Ba}_{2} \mathrm{Ce}_{3 / 4} \mathrm{SbO}_{6}$. Using the program LINES2.0 (de Graaff, 1990), their X-ray data could be refined tetragonally with a $=8.667$ (6), $c=17.36$ (1) \AA with all reflections $h+k$ $+l=2 n$, so it is likely that this compound has the same structure as the title compound.

The authors are indepted to Mr G. H. Renes for the collection of the electron diffraction pattern.

References

Betz, B., Schittenhelm, H. J. \& Kemmler-Sack, S. (1982). Z. Anorg. Allg. Chem. 484, 177-186.
Cordfunke, E. H. P. \& IJdo, D. J. W. (1988). J. Phys. Chem. Solids, 49, 551-554.
Graaff, R. A. G. de (1990). Program Exchange Bank for the Dutch Association of Crystallographers, Syb Gorter, Gorlaeus Laboratories, Leiden University, Einsteinweg 5, NL-2333 CC Leiden, The Netherlands.
Groen, W. A. \& IJdo, D. J. W. (1987). Acta Cryst. C43, 1033-1036.
Groen, W. A. \& IJdo, D. J. W. (1988). Acta Cryst. C44, 782-784.
IJdo, D. J. W. (1993). Acta Cryst. C49, 650-652.
Jacobson, A. J., Tofield, B. C. \& Fender, B. E. F. (1972). Acta Cryst. B28, 956-961.
Koester, L., Rauch, H., Herkens, M. \& Schroeder, K. (1981). Report 1755. Kernforschungsanlage Jülich, Germany.
Rauser, G. \& Kemmler-Sack, S. (1980). J. Solid State Chem. 33, 135-140.
Treiber, U. \& Kemmler-Sack, S. (1980a). Z. Anorg. Allg. Chem. 463, 132-136.
Treiber, U. \& Kemmler-Sack, S. (1980b). Z. Anorg. Allg. Chem. 470, 103-180.
Weber, K. (1967). Acta Cryst. 23, 720-725.
Young, R. A. \& Wiles, D. B. (1982). J. Appl. Cryst. 15, 430-438.

$\mathbf{P b}_{3} \mathbf{U}_{11} \mathbf{O}_{\mathbf{3 6}}$, a Rietveld Refinement of Neutron Powder Diffraction Data

By D. J. W. IJdo
Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands

(Received 22 January 1992; accepted 13 October 1992)

Abstract

Trilead undecauranate, $\mathrm{Pb}_{3} \mathrm{U}_{11} \mathrm{O}_{36}, M_{r}=$ 3815.88, orthorhombic, Pmmn. At $T=295 \mathrm{~K}, a=$ 28.459 (1),$\quad b=8.3790$ (3),$\quad c=6.7650$ (3) $\AA, \quad V=$ 1613.2 (1) $\AA^{3}, \quad Z=2, \quad D_{x}=7.854 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu R=$ $0.11, \lambda=2.5700$ (1) $\AA, R_{p}=2.94, R_{w p}=3.99 \%$. The structure has been refined by Rietveld analysis of neutron powder diffraction data for 427 reflections. The structure is closely related to $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$.

0108-2701/93/040654-03\$06.00

Introduction. In the system $\mathrm{Pb}-\mathrm{U}-\mathrm{O}$, several compounds have been reported but only the crystal structures of $\mathrm{Pb}_{3} \mathrm{UO}_{6}$ (Sterns, 1967) and PbUO_{4} (Cremers, Eller, Larson \& Rozenzweig, 1986) have. been determined. In the system $\mathrm{PbO}-\mathrm{UO}_{3}$, Polunina, Kovba \& Ippolitova (1973) report the existence of $\mathrm{Pb}_{11} \mathrm{U}_{5} \mathrm{O}_{26}$ and $\mathrm{Pb}_{3} \mathrm{U}_{11} \mathrm{O}_{36}$ in addition to the compounds already mentioned. In the present paper the © 1993 International Union of Crystallography

[^0]: * Primary diffraction data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55743 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England. [CIF reference: MU0294]

